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moderate to large. In this paper, we present an approach 
that uses an approximate reduced animal model to over-
come the computational issues associated with factor ana-
lytic models for additive genotype-by-environment effects. 
The approach is illustrated using a Pinus radiata breeding 
dataset involving 77 trials, located in environments across 
New Zealand and south eastern Australia, and with pedi-
gree information on 315,581 trees. Using this approach we 
demonstrate the existence of substantial additive genotype-
by-environment interaction for the trait of stem diameter 
measured at breast height. This finding has potentially sig-
nificant implications for both breeding and deployment 
strategies. Although our approach has been developed for 
forest tree breeding programmes, it is directly applicable 
for other outcrossing plant species, including sugarcane, 
maize and numerous horticultural crops.

Introduction

One of the key determinants of genetic gain in plant 
improvement programmes is the accurate prediction of the 
genetic value of an individual. The definition of genetic 
value in the plant breeding context, requires careful consid-
eration, as it is necessarily not only dependant on the traits 
of interest, but also the target set of environments. In forest 
tree breeding programmes, deployment of elite germplasm 
will occur across a well-defined, but heterogeneous, set of 
target environments. The Radiata Pine Breeding Company 
(RPBC) programme, for example, aims to breed and provide 
germplasm for deployment across New Zealand, the central 
and southern tablelands of New South Wales and Tasmania. 
Informed breeding strategies and selection of elite germ-
plasm require a thorough examination of the extent and 
nature of genotype-by-environment (G × E) interaction.

Abstract 
Key message  Modelling additive genotype-by-environ‑
ment interaction is best achieved with the use of factor 
analytic models. With numerous environments and for 
outcrossing plant species, computation is facilitated 
using reduced animal models.
Abstract  The development of efficient plant breed-
ing strategies requires a knowledge of the magnitude and 
structure of genotype-by-environment interaction. This 
information can be obtained from appropriate linear mixed 
model analyses of phenotypic data from multi-environment 
trials. The use of factor analytic models for genotype-by-
environment effects is known to provide a reliable, parsi-
monious and holistic approach for obtaining estimates of 
genetic correlations between all pairs of trials. When breed-
ing for outcrossing species the focus is on estimating addi-
tive genetic correlations and effects which is achieved by 
including pedigree information in the analysis. The use 
of factor analytic models in this setting may be computa-
tionally prohibitive when the number of environments is 
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The phenotypic panel for assessing G × E is a so-called 
multi-environment trial (MET). METs consist of (genetic) 
trials grown over many years and locations which are 
placed within the target set of environments. Fully efficient 
(that is, one-stage) mixed model approaches for analysing 
plant improvement MET datasets are in widespread use in 
Australia (Cullis et al. 2010). These approaches are usually 
based on the methods of Smith et al. (2001) which accom-
modate all aspects of trial design and allow for complex 
modelling of the variance structure of the residuals. The 
key aspect of the Smith et  al. (2001) approach is the use 
of factor analytic (FA) models for modelling the variance 
structure of the G ×  E effects. Smith et  al. (2001) origi-
nally only considered modelling the total genotype-by-
environment effects where information on pedigrees is 
not included in the analysis. Burgueno et  al. (2011) dem-
onstrated the utility of the FA model for modelling G × E 
using six METs in potatoes, maize and wheat. Each of 
these MET datasets had small numbers of genotypes and 
relatively small numbers of environments, but they were 
able to demonstrate an advantage of the FA model over 
other models when there was complex G × E. Oakey et al. 
(2006, 2007) extended the approach of Smith et al. (2001) 
to incorporate modelling both additive and non-additive 
effects in a single and multi-environment trial setting. Cul-
lis et al. (2010) applied these extensions to the analysis of 
yield and oil data from a series of canola breeding trials.

One of the many advantages of using FA models in the 
analysis of large MET datasets which possess a high degree 
of imbalance, is the ability to adequately capture the often 
complex variance structure without the use of an excessive 
number of variance parameters (Kelly et al. 2007). As the 
number of environments, t, becomes large, the number of 
variance parameters for the unstructured variance model 
(that is, t(t + 1)/2) increases to unacceptably high levels 
and hence it is impractical and inefficient to consider fit-
ting the unstructured variance model to MET datasets with 
moderate to large t and poor connectivity. Baltunis et  al. 
(2010), Raymond (2011), Apiolaza (2012) have recently 
considered the analysis of tree breeding MET datasets 
which had moderate to poor connectivity and moderate 
t = 8, 26 and 18, respectively. The variance structure of the 
additive genotype-by-environment effects was modelled 
using t(t − 1)/2 pairwise bivariate unstructured variance 
models. The approach is inherently inefficient, is largely 
uninformative and often results in estimated genetic corre-
lations between environments which are inadmissable (that 
is, greater than 1 or less than −1).

Another advantage of the use of FA models is that the 
(not uncommon) case of a less than full rank variance struc-
ture for the G × E effects can be accommodated, provided 
that an appropriate estimation algorithm is implemented. In 
the case of FA models for G × E effects in the absence of 

pedigree information or residual G × E effects when pedi-
gree information is included, the approach of Thompson 
et al. (2003) may be used. This approach was extended by 
Kelly et al. (2009) for the case of FA models for additive 
G × E effects.

There has been limited adoption of FA models in the 
analysis of tree breeding MET datasets. Costa e Silva et al. 
(2006) used FA models for the analysis of stem diameter 
measured at breast height (DBH) from a MET dataset 
involving 15 Eucalyptus globulus progeny trials estab-
lished in four states of Australia. They fitted FA models of 
order 1 and 2 to the sub-race and family within sub-race by 
environment effects, respectively. These models provided 
a good fit to the variance structures and demonstrated the 
presence of substantial G × E for both sets of effects with 
estimated genetic correlations ranging from −0.23 to 1.00 
and 0.25 to 1.00, respectively.

Hardner et al. (2010) also used FA models for the analy-
sis of DBH in a MET dataset involving 841 hybrid clones 
of eucalypts sown across 21 saline environments in Aus-
tralia. They fitted FA models to the family and genotype 
within family by environment effects, respectively. Due to 
the small number of families (8), attempts to fit high-order 
FA variance models failed. However, FA models for the 
genotype within family effects revealed substantial G × E, 
with the estimated genetic correlations ranging from −0.53 
to 0.99.

Zapata-Valenzuela (2012) used an FA1 model for the 
variance structure of the additive genetic by environment 
effects in the analysis of a MET dataset on loblolly pines 
with 16 environments and 463 clones. They investigated 
two other variance models, namely the compound symmet-
ric and heterogenous variance common correlation model. 
Although there was no formal approach to model selection 
the FA model provided an improvement in fit compared to 
the other two models.

One of the key advantages of the FA model is its links 
with multiple regression and principal component analy-
sis. The FA model can be formulated as a random genetic 
regression of genetic effects on (unknown) environmental 
covariates (that is, factor loadings), with a different slope 
(factor score) for each genotype. This regression is termed 
a latent regression model and simple assumptions regard-
ing the distribution of the slopes and the residual term leads 
to the FA variance structure for the between environment 
genetic covariance matrix. The environmental covariates 
can be rotated to be orthogonal, resulting in the so-called 
principal component solution. This then allows for a mean-
ingful examination of the nature and extent of G × E using 
graphical tools such as biplots (Kempton 1984), latent 
regression plots (Thompson et  al. 2003) and heatmaps of 
the estimated between environment genetic correlation 
matrix with rows and columns ordered using clustering or 
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mixture model approaches (Cullis et  al. 2010). Hardner 
et al. (2010) used the biplot to explore the G × E for the 
genotype within family by environment effects, demon-
strating marked rank changes between environments.

The aim of this paper is to present an approach for inves-
tigating additive genotype-by-environment interaction in 
outcrossing plant species using MET datasets with moder-
ate to large numbers of trials. We illustrate the method with 
an example from the RPBC breeding programme compris-
ing t = 77 trials with pedigree information on 315,581 
trees. The approach of Cullis et al. (2010) would be com-
putationally prohibitive for a dataset of this size, since it 
would involve a set of mixed model equations (MME) of 
the order of 21e6. We present an approach that is based on 
the reduced animal model of Quass and Pollack (1980). 
Our so-called approximate reduced animal model results in 
a significant reduction in the dimension of the MME and is 
used both for the estimation of variance parameters, includ-
ing those associated with the FA model, and the prediction 
of random effects, including breeding values for both back-
ward and forward selections.

Motivating example

The MET dataset comprised 77 trials grown in a range 
of environments across New Zealand and New South 
Wales (Australia) with planting dates spanning the period 
1968 to 2005. The trait of interest in this paper is stem 
diameter (cm) measured at breast height (DBH). Trial 
information is summarised in Table 1. A total of 34 tri-
als comprised trees predominantly from open pollinated 
(OP) families with the remaining trials comprising trees 
from closed pollinated (CP) families. Trees derived 
from an OP family are those for which only one parent 
is known. Progeny derived from a CP family are those 
in which both parents are known. The CP families were 
produced by crossing a small number of male trees with 
a large number of female trees. Clonal material was used 
in 7 trials (E36, E37, E38, E39, E42, E43, E44). Many 
of the trials contained progeny from so-called controls 
which were mixed parent seedlots in which the individual 
parents could not beidentified. Excluding controls, the 
number of families per trial ranged from 19 to 942 (see 
Table  1). Note that in the OP and CP trials there is no 
replication of individuals since all trees are F1 progeny of 
OP or CP families, so there is a one-to-one correspond-
ence between plots and trees.

To describe the experimental designs for each trial 
used in this study we utilise many of the basic concepts 
and nomenclature found in Bailey (2008), which include 
the definition of so-called plot (or blocking) structures, 

treatment structures, the observational unit and experi-
mental unit for comparative experiments. Here the treat-
ment structure is the genetic material (i.e. trees) which is 
grouped (for the majority of trials) into so-called genetic 
sets. For each trial, the genetic sets contained roughly the 
same number of families and each family contained the 
same number of individuals. The plot structure (hereaf-
ter referred to as blocking structure) for most trials was 
blocks, main plots within blocks and plots (ie.  single 
trees) within main plots within blocks. For trials E17, 
E42, E43 and E44 the blocking structure was blocks, main 
plots within blocks, incomplete blocks within main plots 
within blocks and plots within incompleteblocks within 
main plots within blocks. For trials E3, E55, E65, E66, 
E71, E72, E73 and E77 the blocking structure was blocks, 
main plots within blocks, multi-tree plots in main plots 
within blocks and plots within multi-tree plots within 
main plots within blocks. The randomisation of genetic 
material to plots obeyed the blocking structure used for 
each trial, in that genetic sets were randomly assigned to 
main plots within blocks, and individuals within genetic 
sets were randomly assigned to either plots within main 
plots within blocks or groups of individuals from the 
same family were randomly assigned to multi-tree plots 
within main plots within blocks (for the eight trials with 
multi-tree plots). An additional level of restriction of the 
randomisation occurred for those trials with incomplete 
blocks. Lastly for the seven trials without main plots (and 
hence genetic sets) the blocking structure was blocks and 
plots within blocks.

This process resulted in at least a single tree from each 
family in each block (see Table 1). Note that the randomi-
sation of genetic sets to main plots within blocks is due 
to Schutz and Cockerham (1966) and was widely used by 
the RPBC for many years from the early 1970s. Use of 
this design, which is now discontinued, is likely to result 
in far greater accuracies for the comparison of families in 
the same genetic set as opposed to those in different genetic 
sets.

The total number of records in the MET dataset was 
323,804 corresponding to 312,848 trees. Pedigree informa-
tion was available on a total of 315,581 trees, which com-
prised 2,733 parental trees and the 312,848 progeny that 
were grown in the trials. No parental trees were grown in 
the trials. The aim of the analysis of the data is to explore 
additive genotype-by-environment (A  ×  E) interaction 
and to obtain predicted breeding values (additive genetic 
effects) to enable selection of individuals for use as par-
ents. The individuals considered for selection comprise 
existing parents (so-called backward selections) and for 
clonal trials, the clones themselves are of interest (forward 
selections).
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Table 1   Summary of trial 
information

Expt Date Ftype Plots Trees Families Females Males Blocks T/F/R Sets mean

E1 1987 OP 12,838 11,100 467 467 25 1 18 202.6

E2 1987 OP 10,165 8,788 467 467 25 1 18 192.5

E3 1971 OP 6,851 6,433 271 271 5 5 9 220.3

E4 1975 OP 3,827 3,243 101 101 10 3 4 191.9

E5 1975 CP 1,054 933 50 20 20 6 3 5 210.8

E6 1975 OP 4,525 3,856 107 107 10 4 4 149.7

E7 1975 CP 1,360 1,209 60 21 21 6 4 6 167.2

E8 2003 CP 3,883 3,615 128 62 55 30 1 4 201.0

E9 2003 CP 4,147 3,951 121 62 54 30 1 4 162.7

E10 2003 CP 2,482 2,360 125 62 55 24 1 4 192.6

E11 2003 CP 1,300 1,300 59 41 36 20 1 0 158.9

E12 2004 OP 3,355 3,258 127 126 5 30 1 4 204.7

E13 2004 OP 3,785 3,680 128 127 5 30 1 4 191.1

E14 2005 OP 3,279 2,879 121 119 5 30 1 4 213.7

E15 2005 OP 4,128 3,725 124 122 5 30 1 4 177.5

E16 2005 OP 2,462 2,462 84 50 51 30 1 0 161.3

E17 2005 OP 4,549 4,457 234 232 5 20 1 6 169.7

E18 1990 OP 1,209 584 19 19 35 1 0 202.4

E19 1990 OP 483 231 19 19 30 1 0 247.1

E20 1990 CP 3,820 3,370 133 63 80 32 1 5 209.5

E21 1990 CP 2,674 2,373 107 52 67 31 1 4 220.3

E22 1992 CP 3,075 2,740 562 125 5 30 1 4 196.9

E23 1992 CP 3,635 3,248 758 152 5 30 1 5 200.8

E24 1992 CP 4,642 4,164 741 152 5 30 1 5 173.5

E25 1992 OP 3,952 3,510 128 128 32 1 4 221.7

E26 1993 CP 1,946 1,814 84 46 66 25 1 3 204.0

E27 1993 CP 5,176 4,700 942 189 5 30 1 6 248.7

E28 1993 CP 4,496 4,121 813 165 5 30 1 5 187.4

E29 1993 CP 1,984 1,815 485 98 5 30 1 3 213.9

E30 1994 CP 3,930 3,469 80 17 17 32 1 2 159.4

E31 1994 CP 900 812 45 29 24 30 1 2 232.9

E32 1994 CP 1,282 1,183 46 29 24 30 1 2 222.7

E33 1994 CP 1,231 1,017 41 27 22 30 1 2 240.8

E34 1995 CP 701 589 26 26 21 30 1 0 202.1

E35 1995 CP 823 656 24 24 19 30 1 0 169.6

E36 1997 CP 1,469 319 33 25 18 6 7 10 231.3

E37 1997 CP 990 190 19 19 16 6 8 5 212.3

E38 1997 CP 2,008 330 33 25 18 6 9 10 198.6

E39 1997 CP 1,174 190 19 19 16 6 10 5 202.4

E40 1997 CP 1,437 1,238 229 52 6 30 1 2 219.4

E41 1997 CP 1,275 1,102 217 52 6 30 1 2 200.4

E42 1999 CP 2627 535 42 18 15 5 10 9 213.3

E43 1999 CP 2035 524 42 18 15 5 8 9 179.9

E44 1999 CP 2403 516 41 17 14 5 9 9 175.2

E45 1988 OP 7,480 6,888 224 224 33 1 9 161.4

E46 1988 OP 6604 6,092 224 224 32 1 9 211.4

E47 1988 OP 4,285 3,991 224 224 29 1 8 219.1

E48 2000 CP 1,983 1,930 116 56 59 26 1 6 173.3

E49 2000 CP 2,397 2,320 105 54 58 30 1 6 152.4
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Statistical methods

Single‑trial analysis

We commence by considering the analysis of a single trial. 
Let y denote the n × 1 vector of data, where n is the number 
of plots in the trial. We assume there is pedigree information 
available on m individuals. The model for y can be written as

where τ is a vector of fixed effects with associated design 
matrix X; ug is the m × 1 vector of random genetic effects with 
associated design matrix Zg; up is a vector of random non-
genetic (or peripheral) effects with associated design matrix 
Zp and e is the vector of residuals for the trial. In the simplest 
case the vector τ comprises an overall mean (intercept) for the 
trial but may include other effects as necessary. The vector up 
comprises sub-vectors associated with the blocking structure 
of the experimental design for each trial. Examples include, 
block effects, main plot within block effects and incomplete 
block within main plot within block effects.

(1)y = Xτ + Zgug + Zpup + e

We assume that the ug, up and e vectors of random 
effects are mutually independent, and distributed as multi-
variate Gaussian, with zero means. The variance matrix for 
up is given by Gp = ⊕b

k=1
σ 2

pk
Iqk

 where b is the number of 
components in up and qk is the number of effects in (length 
of) upk

. The variance matrix for the residuals is assumed 
to be R = σ 2In. Note that in the analysis of field trials for 
cereal crops, say, it is usual that the spatial co-ordinates of 
the plots are readily available. This allows the use of spatial 
analysis techniques [see Stefanova et al. (2009), for exam-
ple] which involve non-identity forms for R. The spatial 
co-ordinates of the trees in our example were not readily 
available so the traditional complete and incomplete block 
models have been used for the non-genetic effects and 
residuals.

Full animal model

We consider a simple model for ug given by

ug = ua + ue

Table 1   continued Expt Date Ftype Plots Trees Families Females Males Blocks T/F/R Sets mean

E50 2000 CP 3,321 3,232 114 56 60 30 1 6 159.7

E51 1989 OP 11,253 10,283 329 329 32 1 12 190.4

E52 1989 OP 10,132 9,251 329 329 32 1 12 206.5

E53 1989 OP 9,560 8,759 329 329 32 1 12 171.7

E54 1975 OP 4,116 3,436 105 105 10 3 4 144.3

E55 1972 OP 4,931 4,583 104 104 10 5 4 233.5

E56 1972 CP 1,327 1,284 90 23 4 15 1 0 250.9

E57 1980 CP 6,354 5,698 203 86 96 46 1 4 234.0

E58 1981 OP 6,968 6,589 171 171 45 1 5 205.8

E59 1981 OP 5,754 5,438 170 170 35 1 5 90.7

E60 1983 OP 5,065 4,951 169 169 33 1 5 144.0

E61 1983 OP 5,043 4,933 169 169 33 1 5 156.6

E62 1985 CP 4,246 4,246 301 75 74 15 1 14 143.9

E63 1987 OP 14,077 12,097 540 540 25 1 21 189.2

E64 1972 CP 2,972 2,972 90 23 4 15 3 0 244.6

E65 1972 OP 2,692 2,512 104 104 7 4 4 225.8

E66 1975 CP 1,452 1,305 50 20 20 6 5 5 234.6

E67 1975 CP 1,085 963 50 20 20 6 3 5 204.4

E68 1975 OP 5,433 4,623 106 106 10 5 4 226.0

E69 1980 CP 8,174 7,274 203 86 96 50 1 4 179.8

E70 1975 CP 1,796 1,600 60 21 21 6 5 6 253.5

E71 1968 OP 8,121 8,121 372 372 5 5 10 240.1

E72 1969 OP 14,544 13,803 588 588 5 5 16 237.7

E73 1971 OP 7,847 7,361 298 298 5 5 10 248.4

E74 1975 CP 1,157 1,023 50 20 20 6 4 5 166.0

E75 1975 OP 3,766 3,217 100 100 10 3 4 114.6

E76 1975 CP 1,296 1,150 50 20 20 6 4 5 191.7

E77 1969 OP 13,206 12,733 564 564 5 5 15 228.8

Planting date; family type 
(open or closed pollinated); 
total number of plots; number 
of non-control trees, families, 
females and males; number of 
blocks; median number of trees 
per family per block; number of 
sets (or blocks); mean DBH
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where the two terms represent the additive and non-additive 
(or residual) genetic effects. More complex models includ-
ing ones which partition the non-additive into dominance 
and residual genetic (that is, non-additive and non-domi-
nance) can also be considered if applicable. Thus the model 
in Eq. (1) becomes

We assume that the variance matrices of the vectors of 
additive and non-additive genetic effects are given by

where A is the m × m numerator relationship matrix.
The maintenance of sparsity is an important property for 

efficient estimation in any software package (see section on 
“Software”) and hence we therefore consider a partition-
ing of the vectors of genetic effects into two sub-vectors, 
the first representing those trees with progeny (i.e.  parental 
trees), and the latter representing those trees without prog-
eny (i.e.  non-parental trees). This partition is denoted by 
uT

s = (uT
sp

, uT
sn

), s = g, a, e. There is a conformal partition-
ing of the columns of Zg given by Zg = [Zgp , Zgn ]. We let mp 
and mn denote the number of trees with and without progeny 
so that m = mp + mn. Typically mp is substantially less than 
m. The numerator relationship matrix is then partitioned as

Now note that

where umn represents the so-called Mendelian variation for 
the non-parental trees, and the matrix Tnp is a parent indi-
cator matrix given by

where Fnp and Mnp are mn × mp female and male parent 
indicator matrices, respectively. Note that if the female 
(male) parent of an individual is unknown the row of Fnp 
(Mnp) corresponding to that individual will consist entirely 
of zeros so that missing parental information does not pre-
sent any difficulties. It follows that

where var
(

umn

)

= σ 2
a Dnn is a diagonal matrix, with ele-

ments of Dnn given by 1
2
(1 − fai), fai being the mean of the 

inbreeding coefficients of the parents of the ith non-paren-
tal CP or clonal individual (tree) or 0.75 − 0.25faif , faif  

(2)y = Xτ + Zgua + Zgue + Zpup + e

var(ua) = σ 2
a A and

var(ue) = σ 2
e Im

A =

[

App Apn

Anp Ann

]

(3)uan = Tnpuap + umn

Tnp = 1
2
(Fnp + Mnp)

A =

[

App AppTT
np

TnpApp TnpAppTT
np + Dnn

]

being the inbreeding coefficient of the female parent for the 
ith non-parental OP individual. Using the properties of the 
inverse of a partitioned matrix it follows that for Qnn = D−1

nn  

Thus, by ordering the genetic effects as parental trees fol-
lowed by their progeny, the partition of the inverse of the 
numerator relationship matrix relating to progeny (that is, 
Qnn) is diagonal (maximally sparse). This ordering will 
allow the sparsity of the MME (Henderson 1950) to be 
maintained during the absorption process so as to provide a 
computationally efficient scheme. It also provides the basis 
for the reduced animal (RA) model introduced by Quass 
and Pollack (1980).

Reduced (and approximate reduced) animal model

Using the partitioning of the additive genetic effects into 
parental and non-parental, then substituting Eq. (3) into Eq. 
(2), gives the so-called reduced animal (RA) model:

The genetic effects comprise the additive effects for parental 
trees, that is, uap with associated variance matrix σ 2

a App; the 
Mendelian effects for non-parental trees, that is umn with asso-
ciated variance matrix σ 2

a Dnn and the residual genetic effects 
for all trees, that is ue with associated variance matrix σ 2

e Im.
A more simple form for the design matrix for the addi-

tive effects for parental trees in Eq. (4) is now derived. Con-
sider a partition of the data vector into two components, yp 
and yn, corresponding to parental and non-parental trees. 
The components have length np and nn respectively, so that 
n = np + nn. In many cases there are no data on parents so 
that np = 0 but for generality, and for the prediction of for-
ward selections, we allow for np > 0 here. For ease of illus-
tration, and without loss of generality, we assume that the 
data vector is ordered as y = (yT

p , yT
n )T. Using this ordering 

the design matrix for uap in Eq. (4) is given by

where Zfnp
= Zgnn Fnp and Zmnp = Zgnn Mnp are the design 

matrices for females and males for the non-parental trees. 
Hence it follows that

A−1 =

[

A−1
pp + TT

npQnnTnp − TT
npQnn

−QnnTnp Qnn

]

(4)y = Xτ + (Zgp
+ Zgn

Tnp)uap
+ Zgn

umn
+ Zgue + Zpup + e

Zgp + Zgn Tnp =

[

Zgpp

0

]

+

[

0

Zgnn Tnp

]

=

[

Zgpp

0

]

+

[

0
1
2
(Zfnp

+ Zmnp)

]

(5)
Zgp + Zgn Tnp =

[

1
2
(Zgpp + Zgpp)

1
2
(Zfnp

+ Zmnp)

]

= 1
2
(Zf + Zm)
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where

are the design matrices for female and male parents, where 
the female and male parents are coded as themselves for 
parental trees. The RA model can then be written as

Thus the elements of the design matrix are simply computed 
as the average of the elements of the female and male parent 
design matrices. Using the results in the previous section, it 
is easily shown that the variance of the data vector for the 
RA model is identical to that for the full animal model.

The MME for the RA model in Eq. (6) have the same 
number of equations (2m) for the genetic effects as does 
the full animal model. However, the model was originally 
proposed purely for the prediction of breeding values, that 
is, assuming known estimates of variance parameters. In 
this case, the Mendelian and residual genetic effects can 
be combined to form a composite term with the resultant 
model given by:

where u∗
e = (uT

ep
, u∗T

en
)T and u∗

en
= uen + umn with

This formulation results in a reduction in the number of 
equations to be solved (there are now only mp + m equa-
tions for the genetic effects compared with 2m for the full 
animal model).

When there is a requirement to estimate variance 
parameters in addition to obtain E-BLUPs we can con-
sider approximating the diagonal matrix Dnn for the Men-
delian effects by a scaled identity matrix, given by either 
1
2
(1 − f̄ )Imn where f̄  is the mean of the fai values for tri-

als containing the non-parental CP/clonal individuals, or 
by (0.75 − 0.25f̄ )Imn where f̄  is the mean of the faif  values 
for trials containing the non-parental OP individuals. This 
is a similar approach to that of White et al. (2006) who, for 
their simpler setting, ignore inbreeding, so use Dnn = 1

2
Imn

. The use of 1
2
(1 − f̄ )Imn will be a reasonable approxima-

tion if there is little heterogeneity in the fai values for either 
CP, clonal or OP trials containing the non-parental indi-
viduals. In this case, we can use the model as in Eq. (7) 
but with var

(

u∗
en

)

= σ 2∗
m Imn where σ 2∗

m = σ 2
e + 1

2
(1 − f̄ )σ 2

a  
for CP or clonal trials or σ 2∗

m = σ 2
e + (0.75 − 0.25f̄ )σ 2

a  for 
OP trials. We will call the resultant model the approximate 
reduced animal (ARA) model.

Zf =

[

Zgpp

Zfnp

]

and Zm =

[

Zgpp

Zmnp

]

(6)

y = Xτ + 1
2
(Zf + Zm)uap + Zgn umn + Zgue + Zpup + e

(7)y = Xτ + 1
2
(Zf + Zm)uap + Zgu∗

e + Zpup + e

var
(

u∗
e

)

=

[

σ 2
e Imp 0

0 σ 2
e Imn + σ 2

a Dnn

]

Forward selections

As discussed in the description of the motivating exam-
ple, the aim of the analysis of the RPBC data is to obtain 
E-BLUPs of breeding values (additive genetic effects). 
One of the potential drawbacks of the ARA (and RA) 
model is that it does not allow direct prediction of the 
additive genetic effects for non-parental individuals (for-
ward selections) since the Mendelian sampling effect for 
these individuals is confounded with the residual genetic 
effect. Quass and Pollack (1980) provide details for obtain-
ing back-solutions for non-parental individuals in the RA 
model. We could use a similar approach for the ARA model 
but propose a simpler, more direct method. This involves 
augmenting the parental partition of the genetic effects 
to include both the (true) parents and the individuals for 
which forward selections are required. Operationally this 
involves the expansion of App to include the additional indi-
viduals and the alteration of Zf  and Zm to indicate that the 
parents of the forward selection individuals are no longer 
their true parents but are the individuals themselves. In this 
way, E-BLUPs (and associated accuracies) of the additive 
genetic effects for all the required individuals are obtained 
directly from the fit of the mixed model.

Special case of no data on parental individuals

The example dataset is typical of many tree breeding data-
sets in that parental trees are not grown in the trials so there 
are no data for these individuals. In this case, there are sim-
plifications to both the full and reduced animal models due 
to the fact that Zgp = 0, Zgpp does not exist and Zgnn = Zgn 
so that Zf = Zfnp

(= Zgn Fnp) and Zm = Zmnp(= Zgn Mnp).
Clonal trials The  above simplifications mean that the 

ARA model for clonal trials with no data on parents can be 
written as

The full animal model for clonal trials with no data on par-
ents remains as in Eq. (2).

OP/CP trials With these trials there is the additional 
simplification that Zgn = In = Imn. In the context of the full 
animal model of Eq. (2) this means that the variances of the 
residual genetic and residual effects are not identifiable, so 
the model simplifies to

where e∗
e = uen + e with variance matrix σ 2∗

e In where 
σ 2∗

e = σ 2
e + σ 2.

The ARA model simplifies to

(8)y = Xτ + 1
2
(Zfnp

+ Zmnp)uap + Zgn u∗
en

+ Zpup + e

(9)y = Xτ + Zgua + Zpup + e∗
e

(10)y = Xτ + 1
2
(Fnp + Mnp)uap + Zpup + e∗

a
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where e∗
a = umn + uen + e with variance matrix σ 2∗

a In 
where σ 2∗

a = 1
2
(1 − f̄ )σ 2

a + σ 2
e + σ 2 for CP trials or 

σ 2∗
a = (0.75 − 0.25f̄ )σ 2

a + σ 2
e + σ 2 for OP trials.

Multi‑environment trial analysis

Here we extend the models for the analysis of single trials 
to series of trials. We now let y denote the n × 1 combined 
vector of data across all trials in the MET, so for t trials 
we write y = (yT

1 , yT
2 , ...yT

t )T where yj is the nj × 1 vector 
of data for the jth trial and nj is the number of plots in that 
trial. Note then that n =

∑t
j=1 nj. The model for y can be 

written as

where τ = (τT
1 , τT

2 , ...τT
t )T is a vector of fixed effects with 

associated design matrix X (assumed to have full column rank); 
ug = (uT

g1
, uT

g2
, ...uT

gt
)T is the mt × 1 vector of genetic effects 

with associated design matrix Zg; up = (uT
p1

, uT
p2

, ...uT
pt

)T is a 
vector of random non-genetic (or peripheral) effects with asso-
ciated design matrix Zp and e = (eT

1 , eT
2 , ...eT

t )T is the com-
bined vector of residuals from all trials.

As in the case of single-trial analysis we assume that 
ug, up and e are mutually independent, and distributed 
as multivariate Gaussian, with zero means. The variance 
matrix for up is given by Gp = ⊕b

k=1
σ 2

pk
Iqk

 where b is the 
number of components in up and qk is the number of effects 
in (length of) upk

. The variance matrix for the residuals is 
assumed to be R = ⊕t

j=1σ
2
j Inj

.
We partition the mt × 1 vector of genetic effects ug into 

additive effects ua and residual effects ue, so that the MET 
model is given by

As before the vectors of genetic effects are partitioned into 
sub-vectors with the first representing trees with prog-
eny and the second representing trees without progeny. 
This partition is denoted by uT

s = (uT
sp

, uT
sn

), s = g, a, e

. There is a conformal partitioning of the columns of the 
n × mt design matrix Zg given by Zg = [Zgp , Zgn ] where 
the dimensions of the two sub-matrices are n × mpt and 
n × mnt respectively. We note that for this partition to 
apply, us must be ordered as trials within individuals. This 
ordering was adopted by Beeck et  al. (2010) and is the 
reverse of the order considered in Smith et al. (2001). We 
assume that the variance matrices of the vectors of additive 
and residual genetic effects are given by

where, as before, A is the m × m numerator relationship 
matrix.

y = Xτ + Zgug + Zpup + e

(11)y = Xτ + Zgua + Zgue + Zpup + e

var(ua) = A ⊗ Ga and

var(ue) = Im ⊗ Ge

The matrices Ga and Ge are t × t symmetric positive 
(semi)-definite matrices and are generally referred to as the 
between environment additive and residual genetic vari-
ance matrices. The most general form for Ga (or Ge) is a 
so-called unstructured form that contains p = t(t + 1)/2 
parameters to be estimated. Clearly as t increases p 
becomes prohibitively large and this influences both the 
ability to fit the unstructured variance model, as well as the 
reliability of the estimated parameters. The unstructured 
variance model has been frequently used for the analysis 
of tree breeding MET datasets. Baltunis et al. (2010), Api-
olaza (2012), Raymond (2011) used the model in this con-
text, but they mostly fitted the model to subsets of two trials 
from the full set of trials. Such an approach avoids the diffi-
culty in fitting the model, but is statistically inefficient and 
can lead to an overall estimate of Ga (or Ge) which is not 
positive (semi)-definite.

Apart from the lack of parsimony of the unstructured 
variance model, the other difficulty with fitting this vari-
ance model to MET datasets is the poor connectivity 
between trials. The example MET dataset has relatively 
good parental connectivity but many larger MET data-
sets, particularly those found in tree breeding, have poor 
parental connectivity. This has, in part, led to the approach 
adopted in the papers cited above, where the unstructured 
variance model is fitted to those pairs of trials having good 
connectivity.

We have found that the factor analytic (FA) variance 
model (Smith et al. 2001) provides a good approximation 
to the unstructured variance model (Kelly et al. 2007) and 
is both parsimonious and informative. The FA model can 
be viewed as arising from a multiplicative (or regression) 
model for the genetic effects in each environment. If we 
consider the additive genetic effect for individual i and trial 
j, we write

which involves a sum of k multiplicative terms. Each term 
is the product of a genetic effect ( fari

), which is known as 
a factor score, and an environment effect (�arj

), which is 
known as a loading. The “order” (k) of the FA model is the 
number of factors (multiplicative terms) and we denote an 
FA model with k factors as an FA(k) model. The final term 
δaij

 represents a lack of fit of the regression model, and so 
will be termed a genetic regression residual.

The model in Eq. (12) can be written in vector notation 
as

where �a is the t × k matrix of environment loadings, f a 
is the mk × 1 vector of additive genetic scores and δa is the 
mt × 1 vector of genetic regression residuals. We assume 

(12)uaij
= �a1j

fa1i
+ �a2j

fa2i
+ . . . �akj

faki
+ δaij

(13)ua = (Im ⊗ �a)f a + δa



2201Theor Appl Genet (2014) 127:2193–2210	

1 3

f a and δa are independent and are distributed as multivari-
ate Gaussian with zero means and variance matrices given 
by

where �a is a t × t diagonal matrix with a variance (known 
as a specific variance) for each environment. These 
assumptions lead to

so that Ga =
(

�a�
T
a + �a

)

.
To determine an appropriate value of k, we use a meas-

ure similar to an R2 goodness-of-fit value for a multiple 
regression. This is partly driven by the fact that predicted 
breeding values for individual trials are based on the multi-
plicative terms alone, that is, the genetic regression residu-
als are excluded (see Cullis et  al. 2010 for details). Thus 
we define, for each trial, the percentage of additive genetic 
variance accounted for by the k multiplicative terms in Eq. 
(12):

In addition, we define an overall (that is, across 
trial) percentage variance accounted for as 
v̄a = 100tr

(

�a�
T
a

)

/tr(Ga). We choose an order such that 
the overall percentage variance accounted for is high and 
the number of trials with low individual vaj

 values is small.
As before we write the non-parental additive genetic 

effects for each environment as:

where umn is the mnt × 1 vector of Mendelian sam-
pling effects for each environment and Fnp and Mnp are 
mnt × mpt female and male parent indicator matrices across 
all trials (ordered as trials within individuals), respectively. 
In terms of variance matrices we have

where App and Dnn are as defined for the analysis of single 
trials.

Now we consider the full and approximate reduced 
animal models for two scenarios, namely when all the 
trials in the MET are clonal trials and when all are OP/
CP trials. When there is a mixture of the two types, as is 
the case with our example, the models can be formulated 
as an amalgamation of those presented for the individual 
types and so for brevity are not detailed here. We assume 
the typical case in which there are no data on parental 
trees.

var(f a) = A ⊗ Ik and var(δa) = A ⊗ �a

var(ua) = A ⊗
(

�a�
T
a + �a

)

vaj
= 100

k
∑

r=1

�
2
arj

/

(

k
∑

r=1

�
2
arj

+ ψj

)

(14)uan = Tnpuap + umn and Tnp = 1
2

(

Fnp + Mnp

)

var
(

uap

)

= App ⊗ Ga and var
(

umn

)

= Dnn ⊗ Ga

Clonal METs

The full animal model for clonal METs with no data on 
parents is as given in Eq. (11). The ARA is given by

where Zfnp
= Zgn Fnp and Zmnp = Zgn Mnp are the n × mnt 

design matrices for the female and male parents and 
u∗

en
= uen + umn with variance matrix given by

Recall that in the analysis of a single trial, the variance 
matrix of this composite term could be written as a scaled 
identity matrix (σ 2∗

m Imn) where the scalar was the simple 
sum of two components (σ 2

e + 1
2
(1 − f̄ )σ 2

a ). However, in 
Eq. (16) we have the sum of two variance matrices, each of 
which will either be modelled using an FA model (possibly 
with different orders) or assumed to have an unstructured 
form. In the analysis of crop breeding METs, experience 
has shown that the variance matrices for each component of 
the composite genetic residual can be quite different. Given 
this, it may not be sensible to use the ARA model for the 
analysis of clonal MET datasets. In practice, however, we 
often include clonal trees in the analysis as parents, that is, 
as forward selections. The problem is then avoided since 
the model reverts to the full animal model. This may not 
be an option for larger clonal MET datasets in which it is 
computationally prohibitive to fit the full animal model.

OP/CP METs

Since there is no true replication in OP/CP METs and indi-
viduals within a trial occur once and only once in the full 
MET dataset, then n = mn and

where σ 2
ej

, j = 1, . . . , t are the diagonal elements of Ge. 
These variances and the residual variances are therefore not 
identifiable so that Eq. (11) becomes

where e∗
e = uen + e with

The ARA is given by

(15)y = Xτ + 1
2
(Zfnp

+ Zmnp)uap + Zgn u∗
en

+ Zpup + e

(16)var
(

u∗
en

)

= Imn ⊗
(

Ge + 1
2
(1 − f̄ )Ga

)

Zg(Im ⊗ Ge)Z
T
g = ⊕t

j=1σ
2
ej

Inj

(17)y = Xτ + Zgua + Zpup + e∗
e

var
(

e∗
e

)

= ⊕t
j=1(σ

2
ej

+ σ 2
j )Inj

= ⊕t
j=1σ

2∗
ej

Inj

= R∗
e

(18)y = Xτ + 1
2
(Fnp + Mnp)uap + Zpup + e∗

a
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where e∗
a = umn + uen + e with variance matrix ⊕t

j=1σ
2∗
aj

Inj
 

where σ 2∗
aj

= 1
2
(1 − f̄ )σ 2

aj
+ σ 2

ej
+ σ 2

j , for clonal or CP tri-

als, or σ 2∗
aj

= (0.75 − 0.25f̄ )σ 2
aj

+ σ 2
ej

+ σ 2
j  for OP trials 

and σ 2
aj

, j = 1, . . . , t are the diagonal elements of Ga.

Software

The fitting of the mixed models presented in this paper 
involves the estimation of the variance parameters using 
residual maximum likelihood (REML) and the estimation 
and prediction of the fixed and random effects. All models 
in this paper were fitted using the ASReml-R package (But-
ler et al. 2009) within the R statistical environment (R Core 
Team 2012) which uses the average information algorithm 
(Gilmour et  al. 1995) for REML estimation of variance 
parameters. Note that the implementation for FA models 
in ASReml-R (Butler et al. 2009), which is due to Thomp-
son et al. (2003) and Kelly et al. (2009), handles the (not 
uncommon) case where at least two of the REML estimates 
of the specific variances are zero and the overall estimate of 
Ga is of less than full rank.

The average information algorithm is an iterative proce-
dure and, for any iteration, a key step is the solution of the 
MME using the process of absorption [see Gilmour et  al. 
(1995)]. At convergence, that is, once the REML estimates 
of the variance parameters have been obtained, the solu-
tion of the MME can be used to provide empirical best lin-
ear unbiased estimates (E-BLUEs) of the fixed effects and 
empirical best linear unbiased predictions (E-BLUPs) of 
the random effects (Gilmour et al. 2004). The convention in 
this paper is to represent the REML estimate of a variance 
parameter (or matrix) using an overstrike caret symbol (for 
example, σ̂ 2

a ) and the E-BLUP of a random effect (or vec-
tor of random effects) using an overstrike tilde symbol (for 
example, ũa).

The syntax used to fit the FA-3 model in ASReml-R is 
presented in the Appendix. This syntax has been annotated 
to explain some of the arguments used in the call to the 
ASReml-R package.

Results

Prior to undertaking the analysis of a MET dataset it is cru-
cial to assess the degree of genetic connectivity, since poor 
connectivity may prohibit reliable estimation of key genetic 
parameters, in particular genetic correlations between tri-
als. Typically, in the analysis of MET datasets for inbred 
crops, such as most cereal grain crops, this is measured 
using the variety (in this case individual tree) concurrence 
matrix which gives the number of varieties in common for 
each pair of trials.

In the case of trials involving genetically unique individ-
uals, such as trials using trees from OP or CP families, we 
may consider connectivity in terms of the parents, rather 
than the individual trees. This measure has been recently 
used by Baltunis et al. (2010) and Apiolaza (2012). Figure 1  
displays the parental concurrence matrix for the example as 
a heatmap (R Core Team 2012). The diagonal elements of 
the matrix are the number of parents used in the trial and 
the off-diagonal elements are the number of parents in com-
mon, considering both female and male parents together. 
Note that the original MET dataset included an additional 5 
trials but these had no parents in common with the other 77 
trials and so were excluded from the final dataset. The heat-
map in Fig. 1 has been ordered from top to bottom (and left 
to right) as the best to worst connected trials, determined 
on the basis of the percentage of zero concurrences for each 
trial. In an unpublished simulation study it was shown that 
when an FA model was used for genotype-by-environment 
effects, there was little bias in the estimated genetic corre-
lation for a pair of trials with poor concurrence (even zero 
concurrence), provided there was sufficient linkage through 
other trials. Thus, even though Fig. 1 shows there is a num-
ber of pairs of trials with no parents in common, the pattern 
of connectivity appears to be sufficient for fitting the FA 
model for A × E effects.

The analysis conducted for these data corresponded to 
the ARA model described in the section for multi-envi-
ronment trials. In the notation of that section, the exam-
ple dataset relates to t = 77 trials and m = 315,581 trees. 
Predicted additive genetic effects were required both for 
backward selections (2,733 parental trees) and forward 
selections (1,062 clonal trees). Thus the parental parti-
tion of the genetic effects was augmented to include the 
clones. The first sub-vector of genetic effects related to 
these mp = 3,795 individuals and the second to the remain-
ing mn = 311,786 (non-parental and non-clonal) trees. The 
matrix App was expanded in a corresponding manner to 
relate to both backward and forward selections.

Recall that a key determinant of the suitability of the 
ARA model was the homogeneity of the fai values of the 
mn non-parental (and in our case, non-clonal) individuals. 
For the example dataset, 99.7% of these values were zero so 
we have chosen to use f̄ = 0. This implies that if we were 
able to fit the full animal model to these data, then it is most 
likely that the REML estimates of the additive variance 
parameters from the ARA model and the full animal model 
would be quite similar. The combined analysis of OP, CP 
and clonal trials implies that there is no simple and direct 
equivalence between the two sets of estimates for other vari-
ance parameters. This is an area for future research.

The linear mixed model fitted to the data included a fixed 
main effect for each trial, and terms associated with the 
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blocking structure for trials as appropriate. The variances of 
any of these random effects were allowed to differ between 
trials. Commensurate with the ARA model for a mixture of 
OP/CP and clonal trials, the model included additive geno-
type by trial effects for parents and clones (across all tri-
als) and residual genotype by trial effects for clones (across 
clonal trials only). The variance matrix of the former was 
given by App ⊗ Ga where Ga is a t × t matrix and the vari-
ance matrix of the latter by Imc ⊗ Ge where mc = 1,062 is 
the total number of clones in the dataset and Ge is a tc × tc 
matrix where tc = 7 is the number of clonal trials. FA mod-
els were fitted for Ga but Ge was assumed to have a diago-
nal form since the estimated non-additive genetic variances 

were found to be relatively small (see later). The residual 
variance was allowed to differ between trials.

FA models of order k = 1, 2 and 3 were fitted for Ga. 
The distributions of the individual trial percentage vari-
ances accounted for, together with the overall values are 
shown in Fig. 2. The overall percentage variance accounted 
for by the FA3 model was 86 % and 66 trials had an indi-
vidual value greater than 60  %. Higher order FA models 
could have been fitted, but given the parental connectivity, 
the size of the dataset and the fact that over 85  % of the 
total additive genetic variance has been explained by the 
FA3 model, we chose the FA3 model as providing an ade-
quate fit to the data.

Fig. 1   Heatmap of the parental 
concurrence between all pairs 
of experiments. The boxes along 
the diagonal show the number 
of parents used in individual 
trials. The boxes on the off-
diagonal are coloured accord-
ing to the number of parents 
in common between trials as 
described in the key
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A narrow sense heritability was computed for each trial 
as the ratio of the estimated additive genetic variance for 
the trial (appropriate diagonal element of Ĝa) to total vari-
ance. The latter was obtained as the sum of the estimated 
additive genetic and residual variances for OP/CP trials, 
whilst for clonal trials it also included the estimated non-
additive genetic variance (appropriate diagonal element of 
Ĝe). Note that for clonal trials, the estimated non-additive 
genetic variance was relativey small, with an average con-
tribution to total genetic (additive plus non-additive) vari-
ance of only 13 %. The distribution of individual trial herit-
abilities is shown in Fig. 3.

One of the key advantages of the FA approach is that 
it provides an estimate of the between environment addi-
tive genetic correlation matrix as a whole, rather than in a 
piecemeal manner. The matrix is obtained as Ĉa = D̂aĜaD̂a 
where D̂a is a diagonal matrix with elements given by the 
inverse of the estimated additive genetic standard devia-
tions for individual trials (inverse of square roots of diag-
onal elements of Ĝa). The estimated additive genetic cor-
relation matrix measures the extent of crossover A  ×  E 
interaction, that is, the level of disagreement between tri-
als in terms of the rankings of individuals’ additive genetic 
effects. An examination of Ĉa is therefore crucial for the 
selection of individuals for use as parents for particular 
environments. The matrix may be depicted using a heatmap 
with the rows and columns of the matrix ordered in some 
way that aids with the visualisation of patterns of interac-
tion. We have used an ordering based on the dendrogram 
from an agglomerative-nested hierarchical clustering algo-
rithm as implemented in the agnes package in R (R Core 
Team 2012). In this way, trials that are highly correlated 

(so exhibit little crossover interaction) are located close 
together, whereas trials that are poorly correlated will be 
located further apart. The resultant heatmap is shown in 
Fig.  4. In general, the estimated additive genetic correla-
tions between trials are reasonably high, with an average 
pairwise correlation of 0.54. However, there are still a large 
number of low correlations, with 25  % being lower than 
0.37, a value that translates to substantial crossover A × E 
interaction.

Examination of the estimated additive genetic correla-
tion matrix allows characterisation of environments accord-
ing to their patterns of crossover A ×  E interaction. It is 
equally important to consider interaction from the dual per-
spective of the varieties. We need to know how individuals 
respond to a change in environment. The regression inter-
pretation of the FA model [Eq. (12)] provides a natural 
framework for exploring this so-called variety stability. The 
factor scores in Eq. (12) can be thought of as regression 
coefficients and they reflect the additive genetic responses 
of individuals to the environmental covariates (factor load-
ings). Individuals that have near-zero estimated scores for 
all factors are stable in the sense of having little response to 
changes in the loadings.

The regression interpretation of the FA model is often 
most meaningful for loadings that have been rotated to a 
principal component solution. In this case, the first load-
ing accounts for the maximum amount of genetic vari-
ance in the data, the second accounts for the next larg-
est amount and is orthogonal to the first, and so on. When 
applied to the estimated loadings from the FA3 model 
fitted to the example, this resulted in the rotated load-
ings accounting for 59.1, 14.5 and 12.4 % of the additive 
genetic variance. (Note that these sum to the overall per-
centage variance accounted for by the FA3 model as pre-
viously reported).

Using the notation of Cullis et al. (2010) we let �̂∗
arj

 be the 
rotated REML estimate of the loading for environment j in 
factor r and f̃ ∗

ari
 be the associated rotated E-BLUP of the score 

(slope) for individual i. We then write the E-BLUP of the 
additive genetic effect for individual i in environment j as

where β̃aij
 is the predicted A × E regression component. 

The splitting of the predicted additive genetic effect into 
a regression component and a lack of fit term is cru-
cial for selection. Cullis et al. (2010) discuss the choice 
between using predictions that are marginal or condi-
tional to the lack of fit term, so using β̃aij

 or ũaij
, respec-

tively. They conclude that the use of the marginal predic-
tions provides the most consistent approach for selection 

ũaij
= �̂

∗
a1j

f̃ ∗
a1i

+ �̂
∗
a2j

f̃ ∗
a2i

+ . . . �̂∗
akj

f̃ ∗
aki

+ δ̃aij

= β̃aij
+ δ̃aij
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Fig. 3   Distribution of estimated narrow sense heritabilities for indi-
vidual trials



2205Theor Appl Genet (2014) 127:2193–2210	

1 3

in a MET. We adopt this approach here for the selection 
of individuals to be used as parents and consequently 
refer to β̃aij

 as the predicted breeding value for individual 
i in environment j.

Varietal stability may be best viewed using latent 
regression plots which show genetic responses to each set 
of (rotated) factor loadings. For an individual i of inter-
est, we consider a series of plots that are similar to added 
variable plots for a dependent variable (in our case the pre-
dicted breeding values β̃aij

) against a series of independent 
variables (in our case the rotated estimated factor loadings 
�̂
∗
arj

, r = 1, . . . , k). The difference here is that there is a 
natural ordering of the independent variables from 1, . . . , k 
(which is in decreasing order of percentage genetic vari-
ance explained), so, in the sequence of plots, we condition 
both the dependent and independent variable on the preced-
ing factors. Thus the y− and x− axes for the sequence of 
plots are defined as follows:

Plot 1:	 yj = β̃aij
 and xj = �̂

∗
a1j

Plot 2:	 yj = β̃aij
− �̂

∗
a1j

f̃ ∗
a1i

 and xj = �̂
∗
a2j

[...]

Plot k:	 yj = β̃aij
−

∑k−1
r=1 �̂

∗
arj

f̃ ∗
ari

= �̂
∗
akj

f̃ ∗
aki

 and xj = �̂
∗
akj

We consider the latent regression plots for a subset 
of eleven of the most heavily deployed parents from the 
RPBC production population nursery (provided they were 
also used in a reasonable number of trials in this MET 

dataset) and the parent P12. Table 2 presents the percent-
age representation in the production population and the 
E-BLUPs of the factor scores (rotated) for these 12 indi-
viduals. The parent P12 was included as it is very highly 
regarded in terms of DBH, but has recently been discarded 
due to an issue with spiral grain. Figs.  5, 6 and 7 show 
the regression plots for the 12 individuals. The data points 

Fig. 4   Heatmap of the esti-
mated between environment 
additive genetic correlation 
matrix
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Table 2   Predicted (rotated) factor scores for 12 parents from the 
RPBC production population nursery 

Also shown is the number of experiments in the MET in which they 
were used as parents and the percentage representation in the produc-
tion population

Parent Factor 1 Factor 2 Factor 3 Experiments % representation

P1 2.24 −0.11 −1.31 11 10.5

P2 1.61 −2.23 −1.90 24 7.2

P3 1.02 −1.16 −0.93 10 6.7

P4 1.26 0.03 −1.29 28 6.1

P5 2.52 0.07 −0.71 12 5.0

P6 0.14 −0.38 0.33 22 4.6

P7 0.92 0.68 −0.15 25 4.5

P8 −0.31 −0.79 0.50 14 4.2

P9 0.37 1.94 −0.21 11 4.0

P10 1.85 −0.03 −1.00 13 2.8

P11 0.56 −0.20 −1.17 27 2.2

P12 3.20 −0.03 0.95 26 0.6
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on each plot are either coloured blue if the individual 
was used as a parent in the associated trial and red oth-
erwise. The line drawn on each plot has a slope given by 

the predicted score for the individual andfactor concerned, 
that is, as given in Table 2. Recall that in this example, the 
first factor accounted for the majority (59.1 %) of A × E 

Fig. 5   Latent additive genetic 
regression plot for the first 
factor for 12 highly deployed 
individuals
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Fig. 6   Latent additive genetic 
regression plot for the second 
factor for 12 highly deployed 
individuals
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variation so that the regressions on this factor have the 
greatest impact on predicted breeding values. Since all the 
estimated loadings for this factor are positive (see Fig. 5), 
this then means that large positive regression coefficients 
for this factor are desirable for high DBH. Of the individu-
als listed in Table 2, parents P12, P5 and P1 have the high-
est predicted scores for the first factor. Figure 5 shows that 
the predicted breeding values for these parents are always 
positive, and, as suggested by the regression, they increase 
substantially for environments with high estimated load-
ings. None of these three parents is sensitive to the second 
factor, but in terms of the third factor, theslopes for P12 
and P1 have opposite signs (and P5 has a slope closer to 
zero). Parent P2 is more sensitive to the second and third 
factors than the first and parent P6 is relatively stable 
across all 3 factors.

It is interesting to consider the range of stabilities amongst 
the full set of parents and forward selections (3,795 individu-
als). Fig. 8 presents the distributions of the predicted rotated 
scores for each factor and for the parents currently in the pro-
duction population nursery (97 individuals) and the remain-
ing parents and forward selections (3,698 individuals). These 
plots demonstrate the wide range in stability for each factor. 
The most obvious feature is that there has been an upward 
shift in the mean of the distribution of scores for the produc-
tion population compared with the other parents for the first 
factor, but no change in terms of the second and third factors. 

The variability is similar for both sets of individuals for all 
factors. Interestingly, parent P12, with a predicted score of 
3.20 for the first factor (see Table 2) is near the top of the 
distribution for the production populationfor this factor, pro-
viding support for its credentials as a parent that can produce 
high DBH progeny in many environments.

Fig. 7   Latent additive genetic 
regression plot for the third 
factor for 12 highly deployed 
individuals
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Discussion

This paper has presented an approach to the analysis of 
tree breeding multi-environment trial (MET) datasets with 
moderate to large numbers of environments. The approach 
utilises a factor analytic (FA) model to capture the variance 
structure of the additive genotype-by-environment (A × E) 
effects in a parsimonious and holistic manner and uses an 
approximate reduced animal model to overcome compu-
tational issues. Using this approach we have demonstrated 
the existence of substantial A × E interaction for DBH in 
Pinus radiata in New Zealand and New South Wales (Aus-
tralia). Alternative approaches based on subsetting either 
trials or genotypes to simplify the models or to reduce the 
computational burden would have failed to characterise 
the extent and nature of the A × E. The use of the ARA 
model reduced the number of equations associated with the 
A  ×  E effects from approximately 21e6 to 0.29e6 which 
makes this analysis feasible for these data and other data-
sets of this size and complexity. The elapsed time (in sec-
onds) per iteration for the FA3 model was approximately 
300. The hardware platform used was a laptop using an 
Intel i7-4700MQ CPU @ 2.4 GHz and with 16GB RAM 
running with a 64-bit operating system.

The results from our analysis have potentially signifi-
cant implications for both breeding and deployment strate-
gies. Current strategies in the RPBC programme are based 
on overall performance. Since 2000 the philosophy has 
been to plant mixed seedlots with the aim of achieving a 
relatively constant average performance over a range of 
site types. In the MET dataset under study, this overall 
selection index was (weakly) related to parent sensitivity 
to the first factor from the FA model. It is therefore clear 
that much progress has been made. However, this factor 
only accounted for 59.1 % of the A × E variation, leaving 
a substantial amount of interaction that may be exploited 
for specific adaptation. Thus the practice of planting mixed 
parent seedlots may not be optimal and there could be sub-
stantial gains from planting the correct germplasm on the 
appropriate site types.

The challenge now is to develop an implementation 
strategy to capture this specific adaptation. The strategy 
clearly depends on the ability to predict the breeding value 
of an individual for environments other than those used in 
the current MET dataset. The obvious route to a solution 
is the so-called site matching approach, where new target 
environments can be matched with environments in the 
MET dataset. This is a non-trivial problem as the genetic 
response to the environment is high-dimensional, complex 
and potentially non-additive. Costa  e Silva et  al. (2006) 
demonstrated that some of the genotype-by-environment 
interaction in eucalyptus globulus may be due to changes 
in mean minimum temperature, precipitation and solar 

radiation for the warmest quarter of the year, and length 
of time when there is low soil moisture, but the responses 
varied according to the sub-races. Such a study for Pinus 
radiata is the subject of future research.
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Appendix

Below is the ASReml-R syntax to fit the FA3 model. The 
ASReml-R function has numerous arguments which are 
described in detail in the user manual which is distributed 
with the package. The approach we use to fit an FA3 model 
is to use the REML estimates of the variance parameters 
from the FA2 model as starting values for the iterative fit-
ting process for the FA3 model. We have found that this 
improves the chance of convergence without manual inter-
vention. The first call to ASReml-R sets up a template 
which can then be populated with the appropriate starting 
values.

Note the formation of the design matrix for the additive 
effects of the parental and forward selection trees using the 
and constructor function.

The additional terms in the random model formula are 
terms which relate to the blocking structure of the trials. 
For example, the set of trials which were multi-tree plot tri-
als is found in the data vector pplt, while the set of trials 
which were incomplete block designs is found in the data 
vector pblk. The relationship matrices for additive effects 
is provided in the ginverse argument, we require a very 
large amount of workspace and the term which is fitted as 
a sparse term is a factor with K levels where K is one more 
than the number of trees whose female parent was a control 
tree. Lastly the factor TExpt is a copy of the trial factor 
for those trials which are clonal trials else is it set to miss-
ing value indicator (NA).
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> s3.ram.sv <- asreml(dbh ~ Expt, random = ~fa(Expt, 3):zero:ped(Fcln) +

+ and(fa(Expt, 3):half:ped(Fcln)) + and(fa(Expt, 3):half:ped(Mcln)) +

+ at(Expt):Replicate + at(Expt, s3.pset):Replicate:Setgroup +

+ at(Expt, s3.pplt):Trueplot + at(Expt, s3.pblk):Replicate:Iblk +

+ diag(TExpt):Tclone, rcov = ~at(Expt):units, data = s3.df,

+ ginverse = list(Fcln = s3.parents.ainv, Mcln = s3.parents.ainv),

+ na.method.X = "include", start.values = T, workspace = 1.8e+08,

+ sparse = ~Check)

> k <- 3

> fa2.gam <- matrix(summary(s3.ram.asr2, nice = T)$nice[[1]], ncol = k -

+ 1 + 1)

> dimnames(fa2.gam) <- list(levels(s3.df$Expt), c("psi", "lam1",

+ "lam2"))

> ne <- length(levels(s3.df$Expt))

>

> all.gam <- s3.ram.asr2$gammas

> temp <- s3.ram.sv$gammas.table

> others <- rep(T, nrow(temp))

> others[grep("ped", temp$Gamma)] <- F

> these <- rep(T, length(all.gam))

> these[grep("ped", names(all.gam))] <- F

> temp$Value[others] <- all.gam[these]

> temp$Constraint <- as.character(temp$Constraint)

>

> temp$Value[grep("fa1", temp$Gamma)] <- fa2.gam[, "lam1"]

> temp$Value[grep("fa2", temp$Gamma)] <- fa2.gam[, "lam2"]

> temp$Value[grep("fa3", temp$Gamma)] <- c(0, 0, rep(0.02, ne -

+ 2))

> temp$Value[grep("ped.*var", temp$Gamma)] <- fa2.gam[, "psi"] *

+ 0.8

>

> s3.ram.asr3 <- asreml(dbh ~ Expt, random = ~fa(Expt, 3):zero:ped(Fcln) +

+ and(fa(Expt, 3):half:ped(Fcln)) + and(fa(Expt, 3):half:ped(Mcln)) +

+ at(Expt):Replicate + at(Expt, s3.pset):Replicate:Setgroup +

+ at(Expt, s3.pplt):Trueplot + at(Expt, s3.pblk):Replicate:Iblk +

+ diag(TExpt):Tclone, rcov = ~at(Expt):units, data = s3.df,

+ ginverse = list(Fcln = s3.parents.ainv, Mcln = s3.parents.ainv),

+ na.method.X = "include", R.param = temp, G.param = temp,

+ workspace = 4.8e+08, sparse = ~Check)
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